STM32进入停止模式,并等待指定的唤醒事件(WKUP上升沿或RTC闹钟)
08 - STM32 - RTC实时时钟 & PWR电源控制
Unix时间戳
- Unix 时间戳(Unix Timestamp)定义为从UTC/GMT的1970年1月1日0时0分0秒开始所经过的秒数,不考虑闰秒。
- 时间戳存储在一个秒计数器中,秒计数器为32位/64位的整型变量。
- 世界上所有时区的秒计数器相同,不同时区通过添加偏移来得到当地时间。
UTC/GMT
- •GMT(Greenwich Mean Time)格林尼治标准时间是一种以地球自转为基础的时间计量系统。它将地球自转一周的时间间隔等分为24小时,以此确定计时标准。
- UTC(Universal Time Coordinated)协调世界时是一种以原子钟为基础的时间计量系统。它规定铯133原子基态的两个超精细能级间在零磁场下跃迁辐射9,192,631,770周所持续的时间为1秒。当原子钟计时一天的时间与地球自转一周的时间相差超过0.9秒时,UTC会执行闰秒来保证其计时与地球自转的协调一致。
时间戳转换
- C语言的time.h模块提供了时间获取和时间戳转换的相关函数,可以方便地进行秒计数器、日期时间和字符串之间的转换。
函数 | 作用 |
---|---|
time_t time(time_t*); | 获取系统时钟 |
struct tm gmtime(const time_t); | 秒计数器转换为日期时间(格林尼治时间) |
struct tm localtime(const time_t); | 秒计数器转换为日期时间(当地时间) |
time_t mktime(struct tm*); | 日期时间转换为秒计数器(当地时间) |
char ctime(const time_t); | 秒计数器转换为字符串(默认格式) |
char asctime(const struct tm); | 日期时间转换为字符串(默认格式) |
size_t strftime(char, size_t, const char, const struct tm*); | 日期时间转换为字符串(自定义格式) |
BKP备份寄存器 & RTC实时时钟
BKP简介
BKP基本结构
RTC简介
RTC框图
RTC基本结构
硬件电路
RTC操作注意事项
读写备份寄存器(程序)
接线图
代码
main.c
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "Key.h"
uint8_t KeyNum; //定义用于接收按键键码的变量
uint16_t ArrayWrite[] = {0x1234, 0x5678}; //定义要写入数据的测试数组
uint16_t ArrayRead[2]; //定义要读取数据的测试数组
int main(void)
{
/*模块初始化*/
OLED_Init(); //OLED初始化
Key_Init(); //按键初始化
/*显示静态字符串*/
OLED_ShowString(1, 1, "W:");
OLED_ShowString(2, 1, "R:");
/*开启时钟*/
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); //开启PWR的时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE); //开启BKP的时钟
/*备份寄存器访问使能*/
PWR_BackupAccessCmd(ENABLE); //使用PWR开启对备份寄存器的访问
while (1)
{
KeyNum = Key_GetNum(); //获取按键键码
if (KeyNum == 1) //按键1按下
{
ArrayWrite[0] ++; //测试数据自增
ArrayWrite[1] ++;
BKP_WriteBackupRegister(BKP_DR1, ArrayWrite[0]); //写入测试数据到备份寄存器
BKP_WriteBackupRegister(BKP_DR2, ArrayWrite[1]);
OLED_ShowHexNum(1, 3, ArrayWrite[0], 4); //显示写入的测试数据
OLED_ShowHexNum(1, 8, ArrayWrite[1], 4);
}
ArrayRead[0] = BKP_ReadBackupRegister(BKP_DR1); //读取备份寄存器的数据
ArrayRead[1] = BKP_ReadBackupRegister(BKP_DR2);
OLED_ShowHexNum(2, 3, ArrayRead[0], 4); //显示读取的备份寄存器数据
OLED_ShowHexNum(2, 8, ArrayRead[1], 4);
}
}
测试
实时时钟(程序)
接线图
代码
System - MyRTC.c
#include "stm32f10x.h" // Device header
#include <time.h>
uint16_t MyRTC_Time[] = {2023, 1, 1, 23, 59, 55}; //定义全局的时间数组,数组内容分别为年、月、日、时、分、秒
void MyRTC_SetTime(void); //函数声明
/**
* 函 数:RTC初始化
* 参 数:无
* 返 回 值:无
*/
//如果LSE无法起振导致程序卡死在初始化函数中
//可将初始化函数替换为下述代码,使用LSI当作RTCCLK
//LSI无法由备用电源供电,故主电源掉电时,RTC走时会暂停
void MyRTC_Init(void)
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);
PWR_BackupAccessCmd(ENABLE);
if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5)
{
RCC_LSICmd(ENABLE);
while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);
RCC_RTCCLKCmd(ENABLE);
RTC_WaitForSynchro();
RTC_WaitForLastTask();
RTC_SetPrescaler(40000 - 1);
RTC_WaitForLastTask();
MyRTC_SetTime();
BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);
}
else
{
RCC_LSICmd(ENABLE); //即使不是第一次配置,也需要再次开启LSI时钟
while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);
RCC_RTCCLKCmd(ENABLE);
RTC_WaitForSynchro();
RTC_WaitForLastTask();
}
}
/**
* 函 数:RTC设置时间
* 参 数:无
* 返 回 值:无
* 说 明:调用此函数后,全局数组里时间值将刷新到RTC硬件电路
*/
void MyRTC_SetTime(void)
{
time_t time_cnt; //定义秒计数器数据类型
struct tm time_date; //定义日期时间数据类型
time_date.tm_year = MyRTC_Time[0] - 1900; //将数组的时间赋值给日期时间结构体
time_date.tm_mon = MyRTC_Time[1] - 1;
time_date.tm_mday = MyRTC_Time[2];
time_date.tm_hour = MyRTC_Time[3];
time_date.tm_min = MyRTC_Time[4];
time_date.tm_sec = MyRTC_Time[5];
time_cnt = mktime(&time_date) - 8 * 60 * 60; //调用mktime函数,将日期时间转换为秒计数器格式
//- 8 * 60 * 60为东八区的时区调整
RTC_SetCounter(time_cnt); //将秒计数器写入到RTC的CNT中
RTC_WaitForLastTask(); //等待上一次操作完成
}
/**
* 函 数:RTC读取时间
* 参 数:无
* 返 回 值:无
* 说 明:调用此函数后,RTC硬件电路里时间值将刷新到全局数组
*/
void MyRTC_ReadTime(void)
{
time_t time_cnt; //定义秒计数器数据类型
struct tm time_date; //定义日期时间数据类型
time_cnt = RTC_GetCounter() + 8 * 60 * 60; //读取RTC的CNT,获取当前的秒计数器
//+ 8 * 60 * 60为东八区的时区调整
time_date = *localtime(&time_cnt); //使用localtime函数,将秒计数器转换为日期时间格式
MyRTC_Time[0] = time_date.tm_year + 1900; //将日期时间结构体赋值给数组的时间
MyRTC_Time[1] = time_date.tm_mon + 1;
MyRTC_Time[2] = time_date.tm_mday;
MyRTC_Time[3] = time_date.tm_hour;
MyRTC_Time[4] = time_date.tm_min;
MyRTC_Time[5] = time_date.tm_sec;
}
System - MyRTC.h
#ifndef __MYRTC_H
#define __MYRTC_H
extern uint16_t MyRTC_Time[];
void MyRTC_Init(void);
void MyRTC_SetTime(void);
void MyRTC_ReadTime(void);
#endif
main.c
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "MyRTC.h"
int main(void)
{
/*模块初始化*/
OLED_Init(); //OLED初始化
MyRTC_Init(); //RTC初始化
/*显示静态字符串*/
OLED_ShowString(1, 1, "Date:XXXX-XX-XX");
OLED_ShowString(2, 1, "Time:XX:XX:XX");
OLED_ShowString(3, 1, "CNT :");
OLED_ShowString(4, 1, "DIV :");
while (1)
{
MyRTC_ReadTime(); //RTC读取时间,最新的时间存储到MyRTC_Time数组中
OLED_ShowNum(1, 6, MyRTC_Time[0], 4); //显示MyRTC_Time数组中的时间值,年
OLED_ShowNum(1, 11, MyRTC_Time[1], 2); //月
OLED_ShowNum(1, 14, MyRTC_Time[2], 2); //日
OLED_ShowNum(2, 6, MyRTC_Time[3], 2); //时
OLED_ShowNum(2, 9, MyRTC_Time[4], 2); //分
OLED_ShowNum(2, 12, MyRTC_Time[5], 2); //秒
OLED_ShowNum(3, 6, RTC_GetCounter(), 10); //显示32位的秒计数器
OLED_ShowNum(4, 6, RTC_GetDivider(), 10); //显示余数寄存器
}
}
测试
PWR电源控制
PWR简介
电源框图
上电复位和掉电复位
低功耗模式
模式选择
- 执行WFI(Wait For Interrupt)或者WFE(Wait For Event)指令后,STM32进入低功耗模式。
睡眠模式
停止模式
待机模式
修改主频(程序)
接线图
代码
main.c
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
int main(void)
{
OLED_Init(); //OLED初始化
OLED_ShowString(1, 1, "SYSCLK:"); //显示静态字符串
OLED_ShowNum(1, 8, SystemCoreClock, 8); //显示SystemCoreClock变量
//SystemCoreClock的值表示当前的系统主频频率
while (1)
{
OLED_ShowString(2, 1, "Running"); //闪烁Running,指示当前主循环运行的快慢
Delay_ms(500);
OLED_ShowString(2, 1, " ");
Delay_ms(500);
}
}
测试
睡眠模式 + 串口发送 + 接收(程序)
接线图
代码
Serial.c
#include "stm32f10x.h" // Device header
#include <stdio.h>
#include <stdarg.h>
uint8_t Serial_RxData; //定义串口接收的数据变量
uint8_t Serial_RxFlag; //定义串口接收的标志位变量
/**
* 函 数:串口初始化
* 参 数:无
* 返 回 值:无
*/
void Serial_Init(void)
{
/*开启时钟*/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); //开启USART1的时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //开启GPIOA的时钟
/*GPIO初始化*/
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA9引脚初始化为复用推挽输出
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA10引脚初始化为上拉输入
/*USART初始化*/
USART_InitTypeDef USART_InitStructure; //定义结构体变量
USART_InitStructure.USART_BaudRate = 9600; //波特率
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; //硬件流控制,不需要
USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; //模式,发送模式和接收模式均选择
USART_InitStructure.USART_Parity = USART_Parity_No; //奇偶校验,不需要
USART_InitStructure.USART_StopBits = USART_StopBits_1; //停止位,选择1位
USART_InitStructure.USART_WordLength = USART_WordLength_8b; //字长,选择8位
USART_Init(USART1, &USART_InitStructure); //将结构体变量交给USART_Init,配置USART1
/*中断输出配置*/
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); //开启串口接收数据的中断
/*NVIC中断分组*/
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //配置NVIC为分组2
/*NVIC配置*/
NVIC_InitTypeDef NVIC_InitStructure; //定义结构体变量
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; //选择配置NVIC的USART1线
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //指定NVIC线路使能
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //指定NVIC线路的抢占优先级为1
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //指定NVIC线路的响应优先级为1
NVIC_Init(&NVIC_InitStructure); //将结构体变量交给NVIC_Init,配置NVIC外设
/*USART使能*/
USART_Cmd(USART1, ENABLE); //使能USART1,串口开始运行
}
/**
* 函 数:串口发送一个字节
* 参 数:Byte 要发送的一个字节
* 返 回 值:无
*/
void Serial_SendByte(uint8_t Byte)
{
USART_SendData(USART1, Byte); //将字节数据写入数据寄存器,写入后USART自动生成时序波形
while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); //等待发送完成
/*下次写入数据寄存器会自动清除发送完成标志位,故此循环后,无需清除标志位*/
}
/**
* 函 数:串口发送一个数组
* 参 数:Array 要发送数组的首地址
* 参 数:Length 要发送数组的长度
* 返 回 值:无
*/
void Serial_SendArray(uint8_t *Array, uint16_t Length)
{
uint16_t i;
for (i = 0; i < Length; i ++) //遍历数组
{
Serial_SendByte(Array[i]); //依次调用Serial_SendByte发送每个字节数据
}
}
/**
* 函 数:串口发送一个字符串
* 参 数:String 要发送字符串的首地址
* 返 回 值:无
*/
void Serial_SendString(char *String)
{
uint8_t i;
for (i = 0; String[i] != '\0'; i ++)//遍历字符数组(字符串),遇到字符串结束标志位后停止
{
Serial_SendByte(String[i]); //依次调用Serial_SendByte发送每个字节数据
}
}
/**
* 函 数:次方函数(内部使用)
* 返 回 值:返回值等于X的Y次方
*/
uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{
uint32_t Result = 1; //设置结果初值为1
while (Y --) //执行Y次
{
Result *= X; //将X累乘到结果
}
return Result;
}
/**
* 函 数:串口发送数字
* 参 数:Number 要发送的数字,范围:0~4294967295
* 参 数:Length 要发送数字的长度,范围:0~10
* 返 回 值:无
*/
void Serial_SendNumber(uint32_t Number, uint8_t Length)
{
uint8_t i;
for (i = 0; i < Length; i ++) //根据数字长度遍历数字的每一位
{
Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0'); //依次调用Serial_SendByte发送每位数字
}
}
/**
* 函 数:使用printf需要重定向的底层函数
* 参 数:保持原始格式即可,无需变动
* 返 回 值:保持原始格式即可,无需变动
*/
int fputc(int ch, FILE *f)
{
Serial_SendByte(ch); //将printf的底层重定向到自己的发送字节函数
return ch;
}
/**
* 函 数:自己封装的prinf函数
* 参 数:format 格式化字符串
* 参 数:... 可变的参数列表
* 返 回 值:无
*/
void Serial_Printf(char *format, ...)
{
char String[100]; //定义字符数组
va_list arg; //定义可变参数列表数据类型的变量arg
va_start(arg, format); //从format开始,接收参数列表到arg变量
vsprintf(String, format, arg); //使用vsprintf打印格式化字符串和参数列表到字符数组中
va_end(arg); //结束变量arg
Serial_SendString(String); //串口发送字符数组(字符串)
}
/**
* 函 数:获取串口接收标志位
* 参 数:无
* 返 回 值:串口接收标志位,范围:0~1,接收到数据后,标志位置1,读取后标志位自动清零
*/
uint8_t Serial_GetRxFlag(void)
{
if (Serial_RxFlag == 1) //如果标志位为1
{
Serial_RxFlag = 0;
return 1; //则返回1,并自动清零标志位
}
return 0; //如果标志位为0,则返回0
}
/**
* 函 数:获取串口接收的数据
* 参 数:无
* 返 回 值:接收的数据,范围:0~255
*/
uint8_t Serial_GetRxData(void)
{
return Serial_RxData; //返回接收的数据变量
}
/**
* 函 数:USART1中断函数
* 参 数:无
* 返 回 值:无
* 注意事项:此函数为中断函数,无需调用,中断触发后自动执行
* 函数名为预留的指定名称,可以从启动文件复制
* 请确保函数名正确,不能有任何差异,否则中断函数将不能进入
*/
void USART1_IRQHandler(void)
{
if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET) //判断是否是USART1的接收事件触发的中断
{
Serial_RxData = USART_ReceiveData(USART1); //读取数据寄存器,存放在接收的数据变量
Serial_RxFlag = 1; //置接收标志位变量为1
USART_ClearITPendingBit(USART1, USART_IT_RXNE); //清除USART1的RXNE标志位
//读取数据寄存器会自动清除此标志位
//如果已经读取了数据寄存器,也可以不执行此代码
}
}
Serial.h
#ifndef __SERIAL_H
#define __SERIAL_H
#include <stdio.h>
void Serial_Init(void);
void Serial_SendByte(uint8_t Byte);
void Serial_SendArray(uint8_t *Array, uint16_t Length);
void Serial_SendString(char *String);
void Serial_SendNumber(uint32_t Number, uint8_t Length);
void Serial_Printf(char *format, ...);
uint8_t Serial_GetRxFlag(void);
uint8_t Serial_GetRxData(void);
#endif
main.c
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"
uint8_t RxData; //定义用于接收串口数据的变量
int main(void)
{
OLED_Init(); //OLED初始化
OLED_ShowString(1, 1, "RxData:"); //显示静态字符串
Serial_Init(); //串口初始化
while (1)
{
if (Serial_GetRxFlag() == 1) //检查串口接收数据的标志位
{
RxData = Serial_GetRxData(); //获取串口接收的数据
Serial_SendByte(RxData); //串口将收到的数据回传回去,用于测试
OLED_ShowHexNum(1, 8, RxData, 2); //显示串口接收的数据
}
OLED_ShowString(2, 1, "Running"); //OLED闪烁Running,指示当前主循环正在运行
Delay_ms(100);
OLED_ShowString(2, 1, " ");
Delay_ms(100);
__WFI(); //执行WFI指令,CPU睡眠,并等待中断唤醒
}
}
测试
停止模式 + 对射式红外传感器计次(程序)
接线图
代码
CountSensor.c
#include "stm32f10x.h" // Device header
uint16_t CountSensor_Count; //全局变量,用于计数
/**
* 函 数:计数传感器初始化
* 参 数:无
* 返 回 值:无
*/
void CountSensor_Init(void)
{
/*开启时钟*/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); //开启GPIOB的时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); //开启AFIO的时钟,外部中断必须开启AFIO的时钟
/*GPIO初始化*/
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure); //将PB14引脚初始化为上拉输入
/*AFIO选择中断引脚*/
GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource14);//将外部中断的14号线映射到GPIOB,即选择PB14为外部中断引脚
/*EXTI初始化*/
EXTI_InitTypeDef EXTI_InitStructure; //定义结构体变量
EXTI_InitStructure.EXTI_Line = EXTI_Line14; //选择配置外部中断的14号线
EXTI_InitStructure.EXTI_LineCmd = ENABLE; //指定外部中断线使能
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; //指定外部中断线为中断模式
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; //指定外部中断线为下降沿触发
EXTI_Init(&EXTI_InitStructure); //将结构体变量交给EXTI_Init,配置EXTI外设
/*NVIC中断分组*/
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //配置NVIC为分组2
/*NVIC配置*/
NVIC_InitTypeDef NVIC_InitStructure; //定义结构体变量
NVIC_InitStructure.NVIC_IRQChannel = EXTI15_10_IRQn; //选择配置NVIC的EXTI15_10线
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //指定NVIC线路使能
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //指定NVIC线路的抢占优先级为1
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //指定NVIC线路的响应优先级为1
NVIC_Init(&NVIC_InitStructure); //将结构体变量交给NVIC_Init,配置NVIC外设
}
/**
* 函 数:获取计数传感器的计数值
* 参 数:无
* 返 回 值:计数值,范围:0~65535
*/
uint16_t CountSensor_Get(void)
{
return CountSensor_Count;
}
/**
* 函 数:EXTI15_10外部中断函数
* 参 数:无
* 返 回 值:无
* 注意事项:此函数为中断函数,无需调用,中断触发后自动执行
* 函数名为预留的指定名称,可以从启动文件复制
* 请确保函数名正确,不能有任何差异,否则中断函数将不能进入
*/
void EXTI15_10_IRQHandler(void)
{
if (EXTI_GetITStatus(EXTI_Line14) == SET) //判断是否是外部中断14号线触发的中断
{
/*如果出现数据乱跳的现象,可再次判断引脚电平,以避免抖动*/
if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_14) == 0)
{
CountSensor_Count ++; //计数值自增一次
}
EXTI_ClearITPendingBit(EXTI_Line14); //清除外部中断14号线的中断标志位
//中断标志位必须清除
//否则中断将连续不断地触发,导致主程序卡死
}
}
CountSensor.h
#ifndef __COUNT_SENSOR_H
#define __COUNT_SENSOR_H
void CountSensor_Init(void);
uint16_t CountSensor_Get(void);
#endif
main.c
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "CountSensor.h"
int main(void)
{
/*模块初始化*/
OLED_Init(); //OLED初始化
CountSensor_Init(); //计数传感器初始化
/*开启时钟*/
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); //开启PWR的时钟
//停止模式和待机模式一定要记得开启
/*显示静态字符串*/
OLED_ShowString(1, 1, "Count:");
while (1)
{
OLED_ShowNum(1, 7, CountSensor_Get(), 5); //OLED不断刷新显示CountSensor_Get的返回值
OLED_ShowString(2, 1, "Running"); //OLED闪烁Running,指示当前主循环正在运行
Delay_ms(100);
OLED_ShowString(2, 1, " ");
Delay_ms(100);
PWR_EnterSTOPMode(PWR_Regulator_ON, PWR_STOPEntry_WFI); //STM32进入停止模式,并等待中断唤醒
SystemInit(); //唤醒后,要重新配置时钟
}
}
测试
待机模式 + 实时时钟(程序)
接线图
代码
MyRTC.c
#include "stm32f10x.h" // Device header
#include <time.h>
uint16_t MyRTC_Time[] = {2023, 1, 1, 23, 59, 55}; //定义全局的时间数组,数组内容分别为年、月、日、时、分、秒
void MyRTC_SetTime(void); //函数声明
/**
* 函 数:RTC初始化
* 参 数:无
* 返 回 值:无
*/
//如果LSE无法起振导致程序卡死在初始化函数中
//可将初始化函数替换为下述代码,使用LSI当作RTCCLK
//LSI无法由备用电源供电,故主电源掉电时,RTC走时会暂停
void MyRTC_Init(void)
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);
PWR_BackupAccessCmd(ENABLE);
if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5)
{
RCC_LSICmd(ENABLE);
while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);
RCC_RTCCLKCmd(ENABLE);
RTC_WaitForSynchro();
RTC_WaitForLastTask();
RTC_SetPrescaler(40000 - 1);
RTC_WaitForLastTask();
MyRTC_SetTime();
BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);
}
else
{
RCC_LSICmd(ENABLE); //即使不是第一次配置,也需要再次开启LSI时钟
while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);
RCC_RTCCLKCmd(ENABLE);
RTC_WaitForSynchro();
RTC_WaitForLastTask();
}
}
/**
* 函 数:RTC设置时间
* 参 数:无
* 返 回 值:无
* 说 明:调用此函数后,全局数组里时间值将刷新到RTC硬件电路
*/
void MyRTC_SetTime(void)
{
time_t time_cnt; //定义秒计数器数据类型
struct tm time_date; //定义日期时间数据类型
time_date.tm_year = MyRTC_Time[0] - 1900; //将数组的时间赋值给日期时间结构体
time_date.tm_mon = MyRTC_Time[1] - 1;
time_date.tm_mday = MyRTC_Time[2];
time_date.tm_hour = MyRTC_Time[3];
time_date.tm_min = MyRTC_Time[4];
time_date.tm_sec = MyRTC_Time[5];
time_cnt = mktime(&time_date) - 8 * 60 * 60; //调用mktime函数,将日期时间转换为秒计数器格式
//- 8 * 60 * 60为东八区的时区调整
RTC_SetCounter(time_cnt); //将秒计数器写入到RTC的CNT中
RTC_WaitForLastTask(); //等待上一次操作完成
}
/**
* 函 数:RTC读取时间
* 参 数:无
* 返 回 值:无
* 说 明:调用此函数后,RTC硬件电路里时间值将刷新到全局数组
*/
void MyRTC_ReadTime(void)
{
time_t time_cnt; //定义秒计数器数据类型
struct tm time_date; //定义日期时间数据类型
time_cnt = RTC_GetCounter() + 8 * 60 * 60; //读取RTC的CNT,获取当前的秒计数器
//+ 8 * 60 * 60为东八区的时区调整
time_date = *localtime(&time_cnt); //使用localtime函数,将秒计数器转换为日期时间格式
MyRTC_Time[0] = time_date.tm_year + 1900; //将日期时间结构体赋值给数组的时间
MyRTC_Time[1] = time_date.tm_mon + 1;
MyRTC_Time[2] = time_date.tm_mday;
MyRTC_Time[3] = time_date.tm_hour;
MyRTC_Time[4] = time_date.tm_min;
MyRTC_Time[5] = time_date.tm_sec;
}
MyRTC.h
#ifndef __MYRTC_H
#define __MYRTC_H
extern uint16_t MyRTC_Time[];
void MyRTC_Init(void);
void MyRTC_SetTime(void);
void MyRTC_ReadTime(void);
#endif
main.c
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "MyRTC.h"
int main(void)
{
/*模块初始化*/
OLED_Init(); //OLED初始化
MyRTC_Init(); //RTC初始化
/*开启时钟*/
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); //开启PWR的时钟
//停止模式和待机模式一定要记得开启
/*显示静态字符串*/
OLED_ShowString(1, 1, "CNT :");
OLED_ShowString(2, 1, "ALR :");
OLED_ShowString(3, 1, "ALRF:");
/*使能WKUP引脚*/
PWR_WakeUpPinCmd(ENABLE); //使能位于PA0的WKUP引脚,WKUP引脚上升沿唤醒待机模式
/*设定闹钟*/
uint32_t Alarm = RTC_GetCounter() + 10; //闹钟为唤醒后当前时间的后10s
RTC_SetAlarm(Alarm); //写入闹钟值到RTC的ALR寄存器
OLED_ShowNum(2, 6, Alarm, 10); //显示闹钟值
while (1)
{
OLED_ShowNum(1, 6, RTC_GetCounter(), 10); //显示32位的秒计数器
OLED_ShowNum(3, 6, RTC_GetFlagStatus(RTC_FLAG_ALR), 1); //显示闹钟标志位
OLED_ShowString(4, 1, "Running"); //OLED闪烁Running,指示当前主循环正在运行
Delay_ms(100);
OLED_ShowString(4, 1, " ");
Delay_ms(100);
OLED_ShowString(4, 9, "STANDBY"); //OLED闪烁STANDBY,指示即将进入待机模式
Delay_ms(1000);
OLED_ShowString(4, 9, " ");
Delay_ms(100);
OLED_Clear(); //OLED清屏,模拟关闭外部所有的耗电设备,以达到极度省电
PWR_EnterSTANDBYMode(); //STM32进入停止模式,并等待指定的唤醒事件(WKUP上升沿或RTC闹钟)
/*待机模式唤醒后,程序会重头开始运行*/
}
}
Comments | NOTHING