TIM定时器 - STM32


定时中断

03 - STM32 - TIM定时器

TIM(Timer)定时中断

  • 定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断;
  • 16位计数器、预分频器、自动重装寄存器的时基单元,在72MHz计数时钟下可以实现最大59.65s的定时;
  • 不仅具备基本的定时中断功能,而且还包含内外时钟源选择、输入捕获、输出比较、编码器接口、主从触发模式等多种功能;
  • 根据复杂度和应用场景分为了高级定时器、通用定时器、基本定时器三种类型。

定时器类型

  • STM32F103C8T6定时器资源:TIM1、TIM2、TIM3、TIM4
类型编号总线功能
高级定时器TIM1、TIM8APB2拥有通用定时器全部功能,并额外具有重复计数器、死区生成、互补输出、刹车输入等功能
通用定时器TIM2、TIM3、TIM4、TIM5APB1拥有基本定时器全部功能,并额外具有内外时钟源选择、输入捕获、输出比较、编码器接口、主从触发模式等功能
基本定时器TIM6、TIM7APB1拥有定时中断、主模式触发DAC的功能

高级定时器

通用定时器

基本定时器

定时中断基本结构

预分频器时序

  • 计数器计数频率:CK_CNT = CK_PSC / (PSC + 1)

计数器时序

计数器无预装时序

计数器有预装时序

RCC时钟树

定时器定时中断(程序)

接线图

代码

System - Timer.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:定时中断初始化
  * 参    数:无
  * 返 回 值:无
  */
void Timer_Init(void)
{
    /*时基单元初始化*/
    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;                //定义结构体变量
    /*NVIC配置*/
    NVIC_InitTypeDef NVIC_InitStructure;                        //定义结构体变量
    /*开启时钟*/
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);            //开启TIM2的时钟
    
    /*配置时钟源*/
    TIM_InternalClockConfig(TIM2);        //选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟
    
    
    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;        //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;    //计数器模式,选择向上计数
    TIM_TimeBaseInitStructure.TIM_Period = 10000 - 1;                //计数周期,即ARR的值
    TIM_TimeBaseInitStructure.TIM_Prescaler = 7200 - 1;                //预分频器,即PSC的值
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
    TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);                //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元    
    
    /*中断输出配置*/
    TIM_ClearFlag(TIM2, TIM_FLAG_Update);                        //清除定时器更新标志位
                                                                //TIM_TimeBaseInit函数末尾,手动产生了更新事件
                                                                //若不清除此标志位,则开启中断后,会立刻进入一次中断
                                                                //如果不介意此问题,则不清除此标志位也可
    
    TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);                    //开启TIM2的更新中断
    
    /*NVIC中断分组*/
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);                //配置NVIC为分组2
                                                                //即抢占优先级范围:0~3,响应优先级范围:0~3
                                                                //此分组配置在整个工程中仅需调用一次
                                                                //若有多个中断,可以把此代码放在main函数内,while循环之前
                                                                //若调用多次配置分组的代码,则后执行的配置会覆盖先执行的配置
    
    
    NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;                //选择配置NVIC的TIM2线
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;                //指定NVIC线路使能
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;    //指定NVIC线路的抢占优先级为2
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;            //指定NVIC线路的响应优先级为1
    NVIC_Init(&NVIC_InitStructure);                                //将结构体变量交给NVIC_Init,配置NVIC外设
    
    /*TIM使能*/
    TIM_Cmd(TIM2, ENABLE);            //使能TIM2,定时器开始运行
}

/* 定时器中断函数,可以复制到使用它的地方
void TIM2_IRQHandler(void)
{
    if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)
    {
        
        TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
    }
}
*/

System - Timer.h

#ifndef __TIMER_H
#define __TIMER_H

void Timer_Init(void);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Timer.h"

uint16_t Num;            //定义在定时器中断里自增的变量

int main(void)
{
    /*模块初始化*/
    OLED_Init();        //OLED初始化
    Timer_Init();        //定时中断初始化
    
    /*显示静态字符串*/
    OLED_ShowString(1, 1, "Num:");            //1行1列显示字符串Num:
    
    while (1)
    {
        OLED_ShowNum(1, 5, Num, 5);            //不断刷新显示Num变量
    }
}

/**
  * 函    数:TIM2中断函数
  * 参    数:无
  * 返 回 值:无
  * 注意事项:此函数为中断函数,无需调用,中断触发后自动执行
  *           函数名为预留的指定名称,可以从启动文件复制
  *           请确保函数名正确,不能有任何差异,否则中断函数将不能进入
  */
void TIM2_IRQHandler(void)
{
    if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)        //判断是否是TIM2的更新事件触发的中断
    {
        Num ++;                                                //Num变量自增,用于测试定时中断
        TIM_ClearITPendingBit(TIM2, TIM_IT_Update);            //清除TIM2更新事件的中断标志位
                                                            //中断标志位必须清除
                                                            //否则中断将连续不断地触发,导致主程序卡死
    }
}

测试

定时器外部时钟(程序)

代码

Timer.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:定时中断初始化
  * 参    数:无
  * 返 回 值:无
  * 注意事项:此函数配置为外部时钟,定时器相当于计数器
  */
void Timer_Init(void)
{
    /*开启时钟*/
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);            //开启TIM2的时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);            //开启GPIOA的时钟
    
    /*GPIO初始化*/
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);                        //将PA0引脚初始化为上拉输入
    
    /*外部时钟配置*/
    TIM_ETRClockMode2Config(TIM2, TIM_ExtTRGPSC_OFF, TIM_ExtTRGPolarity_NonInverted, 0x0F);
                                                                //选择外部时钟模式2,时钟从TIM_ETR引脚输入
                                                                //注意TIM2的ETR引脚固定为PA0,无法随意更改
                                                                //最后一个滤波器参数加到最大0x0F,可滤除时钟信号抖动
    
    /*时基单元初始化*/
    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;                //定义结构体变量
    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;        //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;    //计数器模式,选择向上计数
    TIM_TimeBaseInitStructure.TIM_Period = 10 - 1;                    //计数周期,即ARR的值
    TIM_TimeBaseInitStructure.TIM_Prescaler = 1 - 1;                //预分频器,即PSC的值
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
    TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);                //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元    
    
    /*中断输出配置*/
    TIM_ClearFlag(TIM2, TIM_FLAG_Update);                        //清除定时器更新标志位
                                                                //TIM_TimeBaseInit函数末尾,手动产生了更新事件
                                                                //若不清除此标志位,则开启中断后,会立刻进入一次中断
                                                                //如果不介意此问题,则不清除此标志位也可
                                                                
    TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);                    //开启TIM2的更新中断
    
    /*NVIC中断分组*/
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);                //配置NVIC为分组2
                                                                //即抢占优先级范围:0~3,响应优先级范围:0~3
                                                                //此分组配置在整个工程中仅需调用一次
                                                                //若有多个中断,可以把此代码放在main函数内,while循环之前
                                                                //若调用多次配置分组的代码,则后执行的配置会覆盖先执行的配置
    
    /*NVIC配置*/
    NVIC_InitTypeDef NVIC_InitStructure;                        //定义结构体变量
    NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;                //选择配置NVIC的TIM2线
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;                //指定NVIC线路使能
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;    //指定NVIC线路的抢占优先级为2
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;            //指定NVIC线路的响应优先级为1
    NVIC_Init(&NVIC_InitStructure);                                //将结构体变量交给NVIC_Init,配置NVIC外设
    
    /*TIM使能*/
    TIM_Cmd(TIM2, ENABLE);            //使能TIM2,定时器开始运行
}

/**
  * 函    数:返回定时器CNT的值
  * 参    数:无
  * 返 回 值:定时器CNT的值,范围:0~65535
  */
uint16_t Timer_GetCounter(void)
{
    return TIM_GetCounter(TIM2);    //返回定时器TIM2的CNT
}

/* 定时器中断函数,可以复制到使用它的地方
void TIM2_IRQHandler(void)
{
    if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)
    {
        
        TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
    }
}
*/

Timer.h

#ifndef __TIMER_H
#define __TIMER_H

void Timer_Init(void);
uint16_t Timer_GetCounter(void);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Timer.h"

uint16_t Num;            //定义在定时器中断里自增的变量

int main(void)
{
    /*模块初始化*/
    OLED_Init();        //OLED初始化
    Timer_Init();        //定时中断初始化
    
    /*显示静态字符串*/
    OLED_ShowString(1, 1, "Num:");            //1行1列显示字符串Num:
    OLED_ShowString(2, 1, "CNT:");            //2行1列显示字符串CNT:
    
    while (1)
    {
        OLED_ShowNum(1, 5, Num, 5);            //不断刷新显示Num变量
        OLED_ShowNum(2, 5, Timer_GetCounter(), 5);        //不断刷新显示CNT的值
    }
}

/**
  * 函    数:TIM2中断函数
  * 参    数:无
  * 返 回 值:无
  * 注意事项:此函数为中断函数,无需调用,中断触发后自动执行
  *           函数名为预留的指定名称,可以从启动文件复制
  *           请确保函数名正确,不能有任何差异,否则中断函数将不能进入
  */
void TIM2_IRQHandler(void)
{
    if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)        //判断是否是TIM2的更新事件触发的中断
    {
        Num ++;                                                //Num变量自增,用于测试定时中断
        TIM_ClearITPendingBit(TIM2, TIM_IT_Update);            //清除TIM2更新事件的中断标志位
                                                            //中断标志位必须清除
                                                            //否则中断将连续不断地触发,导致主程序卡死
    }
}

测试

TIM输出比较

输出比较简介

  • OC(Output Compare)输出比较
  • 输出比较可以通过比较CNT与CCR寄存器值的关系,来对输出电平进行置1、置0或翻转的操作,用于输出一定频率和占空比的PWM波形;
  • 每个高级定时器和通用定时器都拥有4个输出比较通道;
  • 高级定时器的前3个通道额外拥有死区生成和互补输出的功能。

PWM简介

输出比较通道(高级)

输出比较通道(通用)

输出比较模式

模式描述
冻结CNT=CCR时,REF保持为原状态
匹配时置有效电平CNT=CCR时,REF置有效电平
匹配时置无效电平CNT=CCR时,REF置无效电平
匹配时电平翻转CNT=CCR时,REF电平翻转
强制为无效电平CNT与CCR无效,REF强制为无效电平
强制为有效电平CNT与CCR无效,REF强制为有效电平
PWM模式1向上计数:CNT<CCR时,REF置有效电平,CNT≥CCR时,REF置无效电平 向下计数:CNT>CCR时,REF置无效电平,CNT≤CCR时,REF置有效电平
PWM模式2向上计数:CNT<CCR时,REF置无效电平,CNT≥CCR时,REF置有效电平 向下计数:CNT>CCR时,REF置有效电平,CNT≤CCR时,REF置无效电平

PWM基本结构

参数计算

PWM驱动LED呼吸灯(程序)

接线图

代码

PWM.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:PWM初始化
  * 参    数:无
  * 返 回 值:无
  */
void PWM_Init(void)
{
        /*GPIO初始化*/
    GPIO_InitTypeDef GPIO_InitStructure;
        /*时基单元初始化*/
    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;                //定义结构体变量
        /*输出比较初始化*/
    TIM_OCInitTypeDef TIM_OCInitStructure;                            //定义结构体变量
    /*开启时钟*/
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);            //开启TIM2的时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);            //开启GPIOA的时钟
    
    /*GPIO重映射*/
//    RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);            //开启AFIO的时钟,重映射必须先开启AFIO的时钟
//    GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2, ENABLE);            //将TIM2的引脚部分重映射,具体的映射方案需查看参考手册
//    GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);        //将JTAG引脚失能,作为普通GPIO引脚使用
    

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;        //GPIO_Pin_15;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);                            //将PA0引脚初始化为复用推挽输出    
                                                                    //受外设控制的引脚,均需要配置为复用模式        
    
    /*配置时钟源*/
    TIM_InternalClockConfig(TIM2);        //选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟
    

    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
    TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;                    //计数周期,即ARR的值
    TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;                //预分频器,即PSC的值
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
    TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元
    

    TIM_OCStructInit(&TIM_OCInitStructure);                            //结构体初始化,若结构体没有完整赋值
                                                                    //则最好执行此函数,给结构体所有成员都赋一个默认值
                                                                    //避免结构体初值不确定的问题
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;                //输出比较模式,选择PWM模式1
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;        //输出极性,选择为高,若选择极性为低,则输出高低电平取反
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;    //输出使能
    TIM_OCInitStructure.TIM_Pulse = 0;                                //初始的CCR值
    TIM_OC1Init(TIM2, &TIM_OCInitStructure);                        //将结构体变量交给TIM_OC1Init,配置TIM2的输出比较通道1
    
    /*TIM使能*/
    TIM_Cmd(TIM2, ENABLE);            //使能TIM2,定时器开始运行
}

/**
  * 函    数:PWM设置CCR
  * 参    数:Compare 要写入的CCR的值,范围:0~100
  * 返 回 值:无
  * 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比
  *           占空比Duty = CCR / (ARR + 1)
  */
void PWM_SetCompare1(uint16_t Compare)
{
    TIM_SetCompare1(TIM2, Compare);        //设置CCR1的值
}

PWM.h

#ifndef __PWM_H
#define __PWM_H

void PWM_Init(void);
void PWM_SetCompare1(uint16_t Compare);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "PWM.h"

uint8_t i;            //定义for循环的变量

int main(void)
{
    /*模块初始化*/
    OLED_Init();        //OLED初始化
    PWM_Init();            //PWM初始化
    
    while (1)
    {
        for (i = 0; i <= 100; i++)
        {
            PWM_SetCompare1(i);            //依次将定时器的CCR寄存器设置为0~100,PWM占空比逐渐增大,LED逐渐变亮
            Delay_ms(10);                //延时10ms
        }
        for (i = 0; i <= 100; i++)
        {
            PWM_SetCompare1(100 - i);    //依次将定时器的CCR寄存器设置为100~0,PWM占空比逐渐减小,LED逐渐变暗
            Delay_ms(10);                //延时10ms
        }
    }
}

测试

PWM驱动舵机(程序)

舵机简介

  • 舵机是一种根据输入PWM信号占空比来控制输出角度的装置。
  • 输入PWM信号要求:周期为20ms,高电平宽度为0.5ms~2.5ms

硬件电路

接线图

代码

修改PWM.c和PWM.h

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:PWM初始化
  * 参    数:无
  * 返 回 值:无
  */
void PWM_Init(void)
{
        /*GPIO初始化*/
    GPIO_InitTypeDef GPIO_InitStructure;
        /*时基单元初始化*/
    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;                //定义结构体变量
        /*输出比较初始化*/ 
    TIM_OCInitTypeDef TIM_OCInitStructure;                            //定义结构体变量
    TIM_OCStructInit(&TIM_OCInitStructure);                         //结构体初始化,若结构体没有完整赋值
                                                                    //则最好执行此函数,给结构体所有成员都赋一个默认值
    /*开启时钟*/
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);            //开启TIM2的时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);            //开启GPIOA的时钟
    

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);                            //将PA1引脚初始化为复用推挽输出    
                                                                    //受外设控制的引脚,均需要配置为复用模式
    
    /*配置时钟源*/
    TIM_InternalClockConfig(TIM2);        //选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟
    

    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
    TIM_TimeBaseInitStructure.TIM_Period = 20000 - 1;                //计数周期,即ARR的值
    TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1;                //预分频器,即PSC的值
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
    TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元
    

    
                                                                    //避免结构体初值不确定的问题
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;               //输出比较模式,选择PWM模式1
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;       //输出极性,选择为高,若选择极性为低,则输出高低电平取反
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;   //输出使能
    TIM_OCInitStructure.TIM_Pulse = 0;                                //初始的CCR值
    TIM_OC2Init(TIM2, &TIM_OCInitStructure);                        //将结构体变量交给TIM_OC2Init,配置TIM2的输出比较通道2
    
    /*TIM使能*/
    TIM_Cmd(TIM2, ENABLE);            //使能TIM2,定时器开始运行
}

/**
  * 函    数:PWM设置CCR
  * 参    数:Compare 要写入的CCR的值,范围:0~100
  * 返 回 值:无
  * 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比
  *           占空比Duty = CCR / (ARR + 1)
  */
void PWM_SetCompare2(uint16_t Compare)
{
    TIM_SetCompare2(TIM2, Compare);        //设置CCR2的值
}
#ifndef __PWM_H
#define __PWM_H

void PWM_Init(void);
void PWM_SetCompare2(uint16_t Compare);

#endif

Servo.c

#include "stm32f10x.h"                  // Device header
#include "PWM.h"

/**
  * 函    数:舵机初始化
  * 参    数:无
  * 返 回 值:无
  */
void Servo_Init(void)
{
    PWM_Init();                                    //初始化舵机的底层PWM
}

/**
  * 函    数:舵机设置角度
  * 参    数:Angle 要设置的舵机角度,范围:0~180
  * 返 回 值:无
  */
void Servo_SetAngle(float Angle)
{
    PWM_SetCompare2(Angle / 180 * 2000 + 500);    //设置占空比
                                                //将角度线性变换,对应到舵机要求的占空比范围上
}

Servo.h

#ifndef __SERVO_H
#define __SERVO_H

void Servo_Init(void);
void Servo_SetAngle(float Angle);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Servo.h"
#include "Key.h"

uint8_t KeyNum;            //定义用于接收键码的变量
float Angle;            //定义角度变量

int main(void)
{
    /*模块初始化*/
    OLED_Init();        //OLED初始化
    Servo_Init();        //舵机初始化
    Key_Init();            //按键初始化
    
    /*显示静态字符串*/
    OLED_ShowString(1, 1, "Angle:");    //1行1列显示字符串Angle:
    
    while (1)
    {
        KeyNum = Key_GetNum();            //获取按键键码
        if (KeyNum == 1)                //按键1按下
        {
            Angle += 30;                //角度变量自增30
            if (Angle > 180)            //角度变量超过180后
            {
                Angle = 0;                //角度变量归零
            }
        }
        Servo_SetAngle(Angle);            //设置舵机的角度为角度变量
        OLED_ShowNum(1, 7, Angle, 3);    //OLED显示角度变量
    }
}

测试

PWM驱动直流电机(程序)

直流电机及驱动简介

  • 直流电机是一种将电能转换为机械能的装置,有两个电极,当电极正接时,电机正转,当电极反接时,电机反转。
  • 直流电机属于大功率器件,GPIO口无法直接驱动,需要配合电机驱动电路来操作。
  • TB6612是一款双路H桥型的直流电机驱动芯片,可以驱动两个直流电机并且控制其转速和方向。

硬件电路

接线图

代码

修改PWM.c和PWM.h

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:PWM初始化
  * 参    数:无
  * 返 回 值:无
  */
void PWM_Init(void)
{
        /*GPIO初始化*/
    GPIO_InitTypeDef GPIO_InitStructure;
        /*时基单元初始化*/
    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;                //定义结构体变量
        /*输出比较初始化*/ 
    TIM_OCInitTypeDef TIM_OCInitStructure;                            //定义结构体变量
        TIM_OCStructInit(&TIM_OCInitStructure);                         //结构体初始化,若结构体没有完整赋值
                                                                    //则最好执行此函数,给结构体所有成员都赋一个默认值
    /*开启时钟*/
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);            //开启TIM2的时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);            //开启GPIOA的时钟
    

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);                            //将PA2引脚初始化为复用推挽输出    
                                                                    //受外设控制的引脚,均需要配置为复用模式
    
    /*配置时钟源*/
    TIM_InternalClockConfig(TIM2);        //选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟
    

    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
    TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;                 //计数周期,即ARR的值
    TIM_TimeBaseInitStructure.TIM_Prescaler = 36 - 1;               //预分频器,即PSC的值
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
    TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元
    


                                                                    //避免结构体初值不确定的问题
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;               //输出比较模式,选择PWM模式1
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;       //输出极性,选择为高,若选择极性为低,则输出高低电平取反
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;   //输出使能
    TIM_OCInitStructure.TIM_Pulse = 0;                                //初始的CCR值
    TIM_OC3Init(TIM2, &TIM_OCInitStructure);                        //将结构体变量交给TIM_OC3Init,配置TIM2的输出比较通道3
    
    /*TIM使能*/
    TIM_Cmd(TIM2, ENABLE);            //使能TIM2,定时器开始运行
}

/**
  * 函    数:PWM设置CCR
  * 参    数:Compare 要写入的CCR的值,范围:0~100
  * 返 回 值:无
  * 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比
  *           占空比Duty = CCR / (ARR + 1)
  */
void PWM_SetCompare3(uint16_t Compare)
{
    TIM_SetCompare3(TIM2, Compare);        //设置CCR3的值
}
#ifndef __PWM_H
#define __PWM_H

void PWM_Init(void);
void PWM_SetCompare3(uint16_t Compare);

#endif

Motor.c

#include "stm32f10x.h"                  // Device header
#include "PWM.h"

/**
  * 函    数:直流电机初始化
  * 参    数:无
  * 返 回 值:无
  */
void Motor_Init(void)
{
        GPIO_InitTypeDef GPIO_InitStructure;
    /*开启时钟*/
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);        //开启GPIOA的时钟
    

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);                        //将PA4和PA5引脚初始化为推挽输出    
    
    PWM_Init();                                                    //初始化直流电机的底层PWM
}

/**
  * 函    数:直流电机设置速度
  * 参    数:Speed 要设置的速度,范围:-100~100
  * 返 回 值:无
  */
void Motor_SetSpeed(int8_t Speed)
{
    if (Speed >= 0)                            //如果设置正转的速度值
    {
        GPIO_SetBits(GPIOA, GPIO_Pin_4);    //PA4置高电平
        GPIO_ResetBits(GPIOA, GPIO_Pin_5);    //PA5置低电平,设置方向为正转
        PWM_SetCompare3(Speed);                //PWM设置为速度值
    }
    else                                    //否则,即设置反转的速度值
    {
        GPIO_ResetBits(GPIOA, GPIO_Pin_4);    //PA4置低电平
        GPIO_SetBits(GPIOA, GPIO_Pin_5);    //PA5置高电平,设置方向为反转
        PWM_SetCompare3(-Speed);            //PWM设置为负的速度值,因为此时速度值为负数,而PWM只能给正数
    }
}

Motor.h

#ifndef __MOTOR_H
#define __MOTOR_H

void Motor_Init(void);
void Motor_SetSpeed(int8_t Speed);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Motor.h"
#include "Key.h"

uint8_t KeyNum;        //定义用于接收按键键码的变量
int8_t Speed;        //定义速度变量

int main(void)
{
    /*模块初始化*/
    OLED_Init();        //OLED初始化
    Motor_Init();        //直流电机初始化
    Key_Init();            //按键初始化
    
    /*显示静态字符串*/
    OLED_ShowString(1, 1, "Speed:");        //1行1列显示字符串Speed:
    
    while (1)
    {
        KeyNum = Key_GetNum();                //获取按键键码
        if (KeyNum == 1)                    //按键1按下
        {
            Speed += 20;                    //速度变量自增20
            if (Speed > 100)                //速度变量超过100后
            {
                Speed = -100;                //速度变量变为-100
                                            //此操作会让电机旋转方向突然改变,可能会因供电不足而导致单片机复位
                                            //若出现了此现象,则应避免使用这样的操作
            }
        }
        Motor_SetSpeed(Speed);                //设置直流电机的速度为速度变量
        OLED_ShowSignedNum(1, 7, Speed, 3);    //OLED显示速度变量
    }
}

测试

TIM输入捕获

输入捕获简介

  • IC(Input Capture)输入捕获
  • 输入捕获模式下,当通道输入引脚出现指定电平跳变时,当前CNT的值将被锁存到CCR中,可用于测量PWM波形的频率、占空比、脉冲间隔、电平持续时间等参数
  • 每个高级定时器和通用定时器都拥有4个输入捕获通道
  • 可配置为PWMI模式,同时测量频率和占空比
  • 可配合主从触发模式,实现硬件全自动测量

频率测量

输入捕获通道

主从触发模式

输入捕获基本结构

PWMI基本结构

输入捕获模式测频率(程序)

接线图

代码

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "PWM.h"
#include "IC.h"

int main(void)
{
    /*模块初始化*/
    OLED_Init();        //OLED初始化
    PWM_Init();            //PWM初始化
    IC_Init();            //输入捕获初始化
    
    /*显示静态字符串*/
    OLED_ShowString(1, 1, "Freq:00000Hz");        //1行1列显示字符串Freq:00000Hz
    
    /*使用PWM模块提供输入捕获的测试信号*/
    PWM_SetPrescaler(720 - 1);                    //PWM频率Freq = 72M / (PSC + 1) / 100
    PWM_SetCompare1(50);                        //PWM占空比Duty = CCR / 100
    
    while (1)
    {
        OLED_ShowNum(1, 6, IC_GetFreq(), 5);    //不断刷新显示输入捕获测得的频率
    }
}

IC.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:输入捕获初始化
  * 参    数:无
  * 返 回 值:无
  */
void IC_Init(void)
{
    /*开启时钟*/
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);            //开启TIM3的时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);            //开启GPIOA的时钟
    
    /*GPIO初始化*/
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);                            //将PA6引脚初始化为上拉输入
    
    /*配置时钟源*/
    TIM_InternalClockConfig(TIM3);        //选择TIM3为内部时钟,若不调用此函数,TIM默认也为内部时钟
    
    /*时基单元初始化*/
    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;                //定义结构体变量
    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
    TIM_TimeBaseInitStructure.TIM_Period = 65536 - 1;               //计数周期,即ARR的值
    TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1;               //预分频器,即PSC的值
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
    TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM3的时基单元
    
    /*输入捕获初始化*/
    TIM_ICInitTypeDef TIM_ICInitStructure;                            //定义结构体变量
    TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;                //选择配置定时器通道1
    TIM_ICInitStructure.TIM_ICFilter = 0xF;                            //输入滤波器参数,可以过滤信号抖动
    TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;        //极性,选择为上升沿触发捕获
    TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;            //捕获预分频,选择不分频,每次信号都触发捕获
    TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;    //输入信号交叉,选择直通,不交叉
    TIM_ICInit(TIM3, &TIM_ICInitStructure);                            //将结构体变量交给TIM_ICInit,配置TIM3的输入捕获通道
    
    /*选择触发源及从模式*/
    TIM_SelectInputTrigger(TIM3, TIM_TS_TI1FP1);                    //触发源选择TI1FP1
    TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Reset);                    //从模式选择复位
                                                                    //即TI1产生上升沿时,会触发CNT归零
    
    /*TIM使能*/
    TIM_Cmd(TIM3, ENABLE);            //使能TIM3,定时器开始运行
}

/**
  * 函    数:获取输入捕获的频率
  * 参    数:无
  * 返 回 值:捕获得到的频率
  */
uint32_t IC_GetFreq(void)
{
    return 1000000 / (TIM_GetCapture1(TIM3) + 1);        //测周法得到频率fx = fc / N,这里不执行+1的操作也可
}

IC.h

#ifndef __IC_H
#define __IC_H

void IC_Init(void);
uint32_t IC_GetFreq(void);

#endif

测试

PWMI模式测频率占空比(程序)

接线图

代码

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "PWM.h"
#include "IC.h"

int main(void)
{
    /*模块初始化*/
    OLED_Init();        //OLED初始化
    PWM_Init();            //PWM初始化
    IC_Init();            //输入捕获初始化
    
    /*显示静态字符串*/
    OLED_ShowString(1, 1, "Freq:00000Hz");        //1行1列显示字符串Freq:00000Hz
    OLED_ShowString(2, 1, "Duty:00%");            //2行1列显示字符串Duty:00%
    
    /*使用PWM模块提供输入捕获的测试信号*/
    PWM_SetPrescaler(720 - 1);                    //PWM频率Freq = 72M / (PSC + 1) / 100
    PWM_SetCompare1(50);                        //PWM占空比Duty = CCR / 100
    
    while (1)
    {
        OLED_ShowNum(1, 6, IC_GetFreq(), 5);    //不断刷新显示输入捕获测得的频率
        OLED_ShowNum(2, 6, IC_GetDuty(), 2);    //不断刷新显示输入捕获测得的占空比
    }
}

IC.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:输入捕获初始化
  * 参    数:无
  * 返 回 值:无
  */
void IC_Init(void)
{
        /*GPIO初始化*/
    GPIO_InitTypeDef GPIO_InitStructure;
        /*时基单元初始化*/
    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;                //定义结构体变量
        /*PWMI模式初始化*/
    TIM_ICInitTypeDef TIM_ICInitStructure;                            //定义结构体变量
    /*开启时钟*/
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);            //开启TIM3的时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);            //开启GPIOA的时钟
    

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);                            //将PA6引脚初始化为上拉输入
    
    /*配置时钟源*/
    TIM_InternalClockConfig(TIM3);        //选择TIM3为内部时钟,若不调用此函数,TIM默认也为内部时钟
    

    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
    TIM_TimeBaseInitStructure.TIM_Period = 65536 - 1;               //计数周期,即ARR的值
    TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1;               //预分频器,即PSC的值
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
    TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM3的时基单元
    

    TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;                //选择配置定时器通道1
    TIM_ICInitStructure.TIM_ICFilter = 0xF;                            //输入滤波器参数,可以过滤信号抖动
    TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;        //极性,选择为上升沿触发捕获
    TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;            //捕获预分频,选择不分频,每次信号都触发捕获
    TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;    //输入信号交叉,选择直通,不交叉
    TIM_PWMIConfig(TIM3, &TIM_ICInitStructure);                        //将结构体变量交给TIM_PWMIConfig,配置TIM3的输入捕获通道
                                                                    //此函数同时会把另一个通道配置为相反的配置,实现PWMI模式

    /*选择触发源及从模式*/
    TIM_SelectInputTrigger(TIM3, TIM_TS_TI1FP1);                    //触发源选择TI1FP1
    TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Reset);                    //从模式选择复位
                                                                    //即TI1产生上升沿时,会触发CNT归零
    
    /*TIM使能*/
    TIM_Cmd(TIM3, ENABLE);            //使能TIM3,定时器开始运行
}

/**
  * 函    数:获取输入捕获的频率
  * 参    数:无
  * 返 回 值:捕获得到的频率
  */
uint32_t IC_GetFreq(void)
{
    return 1000000 / (TIM_GetCapture1(TIM3) + 1);        //测周法得到频率fx = fc / N,这里不执行+1的操作也可
}

/**
  * 函    数:获取输入捕获的占空比
  * 参    数:无
  * 返 回 值:捕获得到的占空比
  */
uint32_t IC_GetDuty(void)
{
    return (TIM_GetCapture2(TIM3) + 1) * 100 / (TIM_GetCapture1(TIM3) + 1);    //占空比Duty = CCR2 / CCR1 * 100,这里不执行+1的操作也可
}

IC.h

#ifndef __IC_H
#define __IC_H

void IC_Init(void);
uint32_t IC_GetFreq(void);
uint32_t IC_GetDuty(void);

#endif

修改PWM.c和PWM.h

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:PWM初始化
  * 参    数:无
  * 返 回 值:无
  */
void PWM_Init(void)
{
        /*GPIO初始化*/
    GPIO_InitTypeDef GPIO_InitStructure;
        /*输出比较初始化*/
    TIM_OCInitTypeDef TIM_OCInitStructure;                            //定义结构体变量
        /*时基单元初始化*/
    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;                //定义结构体变量
    /*开启时钟*/
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);            //开启TIM2的时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);            //开启GPIOA的时钟
    
    /*GPIO重映射*/
//    RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);            //开启AFIO的时钟,重映射必须先开启AFIO的时钟
//    GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2, ENABLE);            //将TIM2的引脚部分重映射,具体的映射方案需查看参考手册
//    GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);        //将JTAG引脚失能,作为普通GPIO引脚使用
    

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;        //GPIO_Pin_15;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);                            //将PA0引脚初始化为复用推挽输出    
                                                                    //受外设控制的引脚,均需要配置为复用模式        
    
    /*配置时钟源*/
    TIM_InternalClockConfig(TIM2);        //选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟
    

    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
    TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;                    //计数周期,即ARR的值
    TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;                //预分频器,即PSC的值
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
    TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元
    

    TIM_OCStructInit(&TIM_OCInitStructure);                            //结构体初始化,若结构体没有完整赋值
                                                                    //则最好执行此函数,给结构体所有成员都赋一个默认值
                                                                    //避免结构体初值不确定的问题
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;                //输出比较模式,选择PWM模式1
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;        //输出极性,选择为高,若选择极性为低,则输出高低电平取反
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;    //输出使能
    TIM_OCInitStructure.TIM_Pulse = 0;                                //初始的CCR值
    TIM_OC1Init(TIM2, &TIM_OCInitStructure);                        //将结构体变量交给TIM_OC1Init,配置TIM2的输出比较通道1
    
    /*TIM使能*/
    TIM_Cmd(TIM2, ENABLE);            //使能TIM2,定时器开始运行
}

/**
  * 函    数:PWM设置CCR
  * 参    数:Compare 要写入的CCR的值,范围:0~100
  * 返 回 值:无
  * 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比
  *           占空比Duty = CCR / (ARR + 1)
  */
void PWM_SetCompare1(uint16_t Compare)
{
    TIM_SetCompare1(TIM2, Compare);        //设置CCR1的值
}

/**
  * 函    数:PWM设置PSC
  * 参    数:Prescaler 要写入的PSC的值,范围:0~65535
  * 返 回 值:无
  * 注意事项:PSC和ARR共同决定频率,此函数仅设置PSC的值,并不直接是频率
  *           频率Freq = CK_PSC / (PSC + 1) / (ARR + 1)
  */
void PWM_SetPrescaler(uint16_t Prescaler)
{
    TIM_PrescalerConfig(TIM2, Prescaler, TIM_PSCReloadMode_Immediate);        //设置PSC的值
}
#ifndef __PWM_H
#define __PWM_H

void PWM_Init(void);
void PWM_SetCompare1(uint16_t Compare);
void PWM_SetPrescaler(uint16_t Prescaler);

#endif

测试

编码器接口简介

  • Encoder Interface 编码器接口
  • 编码器接口可接收增量(正交)编码器的信号,根据编码器旋转产生的正交信号脉冲,自动控制CNT自增或自减,从而指示编码器的位置、旋转方向和旋转速度
  • 每个高级定时器和通用定时器都拥有1个编码器接口
  • 两个输入引脚借用了输入捕获的通道1和通道2

正交编码器

编码器接口基本结构

工作模式

实例(均不反相)

实例(TI1反相)

编码器接口测速(程序)

接线图

代码

Encoder.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:编码器初始化
  * 参    数:无
  * 返 回 值:无
  */
void Encoder_Init(void)
{
        /*输入捕获初始化*/
    TIM_ICInitTypeDef TIM_ICInitStructure;                            //定义结构体变量
        /*GPIO初始化*/
    GPIO_InitTypeDef GPIO_InitStructure;
        /*时基单元初始化*/
    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;                //定义结构体变量
    /*开启时钟*/
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);            //开启TIM3的时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);            //开启GPIOA的时钟
    

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);                            //将PA6和PA7引脚初始化为上拉输入
    

    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
    TIM_TimeBaseInitStructure.TIM_Period = 65536 - 1;               //计数周期,即ARR的值
    TIM_TimeBaseInitStructure.TIM_Prescaler = 1 - 1;                //预分频器,即PSC的值
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
    TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM3的时基单元
    

    TIM_ICStructInit(&TIM_ICInitStructure);                            //结构体初始化,若结构体没有完整赋值
                                                                    //则最好执行此函数,给结构体所有成员都赋一个默认值
                                                                    //避免结构体初值不确定的问题
    TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;                //选择配置定时器通道1
    TIM_ICInitStructure.TIM_ICFilter = 0xF;                            //输入滤波器参数,可以过滤信号抖动
    TIM_ICInit(TIM3, &TIM_ICInitStructure);                            //将结构体变量交给TIM_ICInit,配置TIM3的输入捕获通道
    TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;                //选择配置定时器通道2
    TIM_ICInitStructure.TIM_ICFilter = 0xF;                            //输入滤波器参数,可以过滤信号抖动
    TIM_ICInit(TIM3, &TIM_ICInitStructure);                            //将结构体变量交给TIM_ICInit,配置TIM3的输入捕获通道
    
    /*编码器接口配置*/
    TIM_EncoderInterfaceConfig(TIM3, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);
                                                                    //配置编码器模式以及两个输入通道是否反相
                                                                    //注意此时参数的Rising和Falling已经不代表上升沿和下降沿了,而是代表是否反相
                                                                    //此函数必须在输入捕获初始化之后进行,否则输入捕获的配置会覆盖此函数的部分配置
    
    /*TIM使能*/
    TIM_Cmd(TIM3, ENABLE);            //使能TIM3,定时器开始运行
}

/**
  * 函    数:获取编码器的增量值
  * 参    数:无
  * 返 回 值:自上此调用此函数后,编码器的增量值
  */
int16_t Encoder_Get(void)
{
    /*使用Temp变量作为中继,目的是返回CNT后将其清零*/
    int16_t Temp;
    Temp = TIM_GetCounter(TIM3);
    TIM_SetCounter(TIM3, 0);
    return Temp;
}

Encoder.h

#ifndef __ENCODER_H
#define __ENCODER_H

void Encoder_Init(void);
int16_t Encoder_Get(void);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Timer.h"
#include "Encoder.h"

int16_t Speed;            //定义速度变量

int main(void)
{
    /*模块初始化*/
    OLED_Init();        //OLED初始化
    Timer_Init();        //定时器初始化
    Encoder_Init();        //编码器初始化
    
    /*显示静态字符串*/
    OLED_ShowString(1, 1, "Speed:");        //1行1列显示字符串Speed:
    
    while (1)
    {
        OLED_ShowSignedNum(1, 7, Speed, 5);    //不断刷新显示编码器测得的最新速度
    }
}

/**
  * 函    数:TIM2中断函数
  * 参    数:无
  * 返 回 值:无
  * 注意事项:此函数为中断函数,无需调用,中断触发后自动执行
  *           函数名为预留的指定名称,可以从启动文件复制
  *           请确保函数名正确,不能有任何差异,否则中断函数将不能进入
  */
void TIM2_IRQHandler(void)
{
    if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)        //判断是否是TIM2的更新事件触发的中断
    {
        Speed = Encoder_Get();                                //每隔固定时间段读取一次编码器计数增量值,即为速度值
        TIM_ClearITPendingBit(TIM2, TIM_IT_Update);            //清除TIM2更新事件的中断标志位
                                                            //中断标志位必须清除
                                                            //否则中断将连续不断地触发,导致主程序卡死
    }
}

测试

声明:三二一的一的二|版权所有,违者必究|如未注明,均为原创|本网站采用BY-NC-SA协议进行授权

转载:转载请注明原文链接 - TIM定时器 - STM32


三二一的一的二